
uo!l_oossv qoxeosoB oo_d S SOIII.SJOA.II.I[l ._q pmeJodo

z£ O0

se 13uiq

E'061-66N

"t9/_9

d 0£ (_SVDI) _jodo_

teu!d SNOIiVD13ddV ONV ABD3HI

:S_BnD-u ABV-M NO (q66_6I-_D-VSVN)

loa!N "IA[P!A13(I

OUlAIuoqz!oAX

SNOI&VDI'-IddV ONV AHOXH,L :SXIEID-N AHV-J/NO

/#

...... _ ,? ,/

./. C....::..--;'i:./ /
d

8g_6 "ON:laodoH '3SVDI

9661_6! l-tod;_H ao_z_a:lUOD VSVN

i! /

iil •

ii<:

i_!:!: i_ i i_I <

i]__ _ii: i_ .

<ik,,' i

_!i/_iil!
< : :<

On k-ary n-cubes: Theory and Applications

Weizhen M_o 2 and David M. Nicol 3

Department of Computer Science

The College of William and Mary

Williamsburg, VA 23187-8795

{ wm, nicol} @cs. wm.ed u

Abstract

Many parallel processing networks can be viewed as graphs called k-ary n-cubes,

whose special cases include rings, hypereubes and toruses. In this paper, combinatorial

properties of k-ary n-cubes are explored. In particular, the problem of characterizing the

subgraph of a given number of nodes with the maximum edge count is studied. These

theoretical results are then used to compute a lower bounding function in branch-and-

bound partitioning algorithms and to establish the optimality of some irregular partitions.

i:•

i%

ii
1An extended abstract of this paper (without any proofs and missing some theorems) has been submit-

ted to the 1995 International Parallel Processing Symposium, with the permission of its Program Chair to

simultaneously submit this full paper to an archival journal.

2This work was supported in part by NSF grant CCR-9210372.

3This work was supported in part by NASA under NAS1-19480 while the author was on sabbatical at the

Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton,

VA 23681. It was also supported in part by NSF grant CCR-9201195.

ii_iiiii

il i ii!

_,!iil

_ _ii'¸¸ II • i ¸ s • i ••il _i i_ •i I

)!'!!i_!'_:i_

:iiiil)_

ii::i!_iiii!iiii_:
i/_(•

: • _iii: .

.:)i _ •

1 Introduction

In a k-ary n-cube Gk,n, each node is identified by an n-bit base-k address bn-1...bi...b0,

and for every dimension i = 0, 1,..., n- 1, it is connected by edges to nodes with addresses

b__] ...bi 4- l(mod k)...b0.

We can also define Gk,_ recursively. First, we define a ring of k nodes 0, 1,..., k - 1 to

be agraph with edges between i and i+l(mod k) for i= 0,1,...,k- 1. When k = 1, a

ring is a point. When k = 2, a ring is two nodes sharing an edge. When k _> 3, a ring is a

conventionM ring. The recursive definition of Gk,_ is as follows.

• Gk,1 is a ring of k nodes. Without loss of generality, we place the k nodes on a line,

and call the leftmost node the 0th position node and the rightmost node the (k - 1) st
position node.

• Gk,n contains k composite subcubes of type Gk,_-i placed from left to right. For each po-

sition i = 0,..., k _-1 - 1, edges between composite subcubes are defined by connecting

all k ith position nodes in a ring.

Further, Gk,n can also be viewed as an n-dimensional (n-D) torus, which is a k × ... × k

cube of grids with wrap-around edges.

The second and the third definitions of G_,n provide two ways of drawing Gk,n. See Figure
1 for an example.

Table 1 shows special cases of Gk,_. The first column contains the values of k, and the

first row contains the values of n. We notice that the class Gk,n contains many topologies

important to parallel processing, such as rings, hypercubes and toruses; hence a thorough

study of Gk,_ is worthwhile.

The following combinatorial properties of Gk,n are easy to verify except perhaps the last

one, for which we provide its proof in Appendix.

PROPERTY 1.1 Gk,_ has k_ nodes.

PROPERTY 1.2 Gk,_ contains k composite subcubes of type Gk,_-l, and the number of edges

with endpoints in different composite subcubes is k _-1 for k = 2 and k n for k _ 3.

PROPERTY 1.3 Gk,n is a regular graph, meaning that each node has the same degree.

degree of each node is n for k = 2 and 2n for k > 3.

The

PROPERTY 1.4 The number of edges in Gk,_ is nk n-1 for k =- 2 and nk _ for k > 3.

PROPERTY 1.5 In each i th composite subcube (0 < i < k - 1) of type G_,n-1 in Gk,n, choose
k-1

mi nodes, and define m = _-_i=o mi. The number of edges with endpoints among these m

nodes but in different composite subcubes is no larger than min{m0, ml} for k = 2, and is no

larger than m - maxo<i<k_l{mi} + min0<i<k_l{mi} for k >_ 3.

::-: ..: ::::: :::::::::.........<: :: _ :: <: !H::: : : < i:: : : ii: i < :! _<i iiii_ii::::iil iii:i_i_i_<i_i_!_j_i_i_ii_i_ii_ii_i_i_ii_ii_iii_ii_iii_iiiii_iii_!_i_i!_!i_iii_i_i_i_iii_iii_]iiiiiiiiii_iii_i_iiiiiiiii_iiiiii_i_i_iiiiii_iii]_iiiiii_¸
i _ _!!_ i: :

,<, !

!,

i<, •

b_ _

i i!i_ii:
_ ,5>

!i"<.%1!i

i!!!!i<__
• i i _ :

ill_<!ii_

_i , _ii__I

G3,2

Figure 1: A 3-ary 2-cube G3,2

G3,2

1 2 _>3

1 point (ring) point (torus) point

2 edge (hypercube/ring) square (hypercube/torus) hypercube

_> 3 ring torus

Table 1: Special cases of Gk,n

Gk,n

<

!171i

Properties of k-ary n-cubes related to VLSI concerns have been explored by Dally [4]. One

property that is related to our study is the bisection-width of k-ary n-cubes, the minimum

number of edges one must cut when partitioning the graph into two subgraphs with the equal

numbers of nodes. Our work considers a generalization of this notion: given that the partition

may contain P subgraphs, what is the minimum number of edges between the subgraphs?

The problem of partitioning graphs for parallel processing includes rigorous treatments

in [8, 11], where algorithms are developed that partition graphs with guarantees on the load-

imbalance and number of edges cut. Our work is similar in the sense of its rigor, restricted

to k-ary n-cubes we give achievable lower bounds on partitioning costs.

We have previously studied properties of k-ary n-cubes in the context of load balancing

[10]. Here graph nodes typically represent computation and edges represent communication.

For any subgraph, define an internal edge to be one with two endpoints in the subgraph

and an external edge to be one with one endpoint in the subgraph; viewing the subgraph

as the set of nodes assigned to a processor, the number of external edges is a measure

of the communication cost. Allowing nodes and edges to be weighted (reflecting relative

computation and communication volumes, respectively), the "load" of a subgraph is taken

to be the sum of the weights of its nodes and its external edges. If Gk,n is partitioned into

P subgraphs, the bottleneck cost of the partition is the maximum load among all partition

subgraphs [2, 12]. The bottleneck cost reflects that of one phase of a data parallel computation

where computation and communication are not overlapped, and a global synchronization

occurs at the end of the phase. The communication that occurs is needed for the subsequent

phase; there are no data dependencies among the computations performed in a given phase.

In a previous paper [10] we showed that certain equi-partitions are optimal in the sense of

i i:U' i:

?i,,)iil/

iiiiiiii!ii_,_

:ii ?::•]

ili i_,_ _

!i :

i¸ ?

]i

i _ !_

minimizing the bottleneck cost, but that, surprisingly, there exist cases where the optimal

partition is not an equi-partition. These results are based on a lower bound on a processor's

communication cost, a bound that is achieved for selected subgraph sizes. The current paper

completes that work by identifying an achievable bound for general subgraph sizes.

The problem of identifying the minimal communication cost (assuming unit edge weight)

of a subgraph of size m is the same as maximizing the number of internal edges in a subgraph

with m nodes, since each node in Gk,n has the same degree. That is, we study the following
combinatorial problem.

Consider any subgraph Sm of m < k n nodes in Gk,n. Let e(Sm) be the number

of internal edges in Sm. Define

ek(m,n)=
'TDrn

For any m = 1, 2,..., kn, determine e_(m, n), the maximum number of internal

edges in any subgraph Sm in a k-ary n-cube.

We will say that a subgraph of Gk,_ with m nodes is optimal if it has ek(m, n) internal edges.

The case k = 1 is trivial: el(m, n) = 0 for m G 1_ = 1. In Sections 2, 3, and 4, we will

determine e2(m, n), e3(m, n), and e4(m, n), respectively. In Section 5, we will study the case

k > 5. In Section 6, we present two applications of the results developed; one uses these

results in the context of branch-and-bound algorithms for partitioning k-ary n-cubes with

generally weighted nodes and edges. Finally, we summarize our contributions in Section 7.

Appendix contains the proofs of Property 1.5 and laminas contributing to the main results.

2 The case k-- 2

To determine e2(m, n), the maximum number of internal edges of a subgraph with m nodes

in a hypercube, we will have to do some prehminary work.

DEFINITION 2.1

w(i) denotes the sum of all bits in the base-2 (binary) representation of i.

W(i,j), i <_j, denotes the sum of w(i),. . ., w(j).

The following three laminas concern properties of function W. Their proofs can be found

in Appendix.

LEMMA 2.1 W(i,2i- 1) : W(0, i- 1) +i for i _ 1.

LEMMA 2.2 W(i + 1, 2i) -=- W(O, i - 1) + i for i >>_1.

LEMMA 2.3 W(j,j + i - 1) _ l_V(O,i- 1) ÷ i for j > i > 1.

We next define a recursive function F and give its closed form in terms of W.

• i ,> < :

• <iliy:<

:7:1,:5̧

i).... •

_!:i!!
< k2_i

DEFINITION 2.2

F(0) = e(1) = 0;

r(m)= r(r l)+ F(L_J)+ [gJ/or m _>2.

THEOREM 2.1 F(m) = W(O, m - 1) for m >_ 1.

Proof We induct on m. When m = 1, F(1) = W(0, 0) = 0. Assume that the equation holds
for _< m - 1. Now consider m.

Case 1. m = 2i for some i > 1.

e(m) = F(i) + F(i) + i (Definition2.2)

= W(0, i- 1) + W(O,i- 1) + i (Inductive hypothesis)

= W(0, i- 1) + W(i, 2i- 1) (Lemma 2.1)

= w(o,2/- 1)

= w(o, m- 1).

Case 2. m=2i+lforsomei> 1.

e(._) = F(i + 1) + F(i) + i (Definition 2.2)

= W(O,i) + W(O,i- 1) + i (Inductive hypothesis)

= W(O,i)+W(i+l,2i) (Lemma2.2)

= w(o,2i)

= l_V(0, m- 1). []

COROLLARY 2.1 F(m) >_ F(mo) + F(ml) + min{m0, ml} for mo + ml = m.

Proof If at least one of m0 and ml is 0, the inequality holds trivially. Now assume that

mo _> ma > 1.

F(m) = W(O,m- 1) (Theorem 2.1)

= W(O, mo- 1)+ W(mo, m- 1)

> W(0, mo - 1) + W(0, ml - 1) + ml (Lemma 2.3)

= F(mo) + F(ml) + ml (Theorem 2.1). |

COROLLARY 2.2 F(m)= lmlog2 m ifm = 21 for some l.

Proof Use Definition 2.2 and inductive proof on m. []

It turns out that F(m) exactly captures the quantity of interest.

THEOREM 2.2 e2(m , n) = F(m) for m < 2n.

i i!i!ii_iii!i_i

i!i_ _(:iii_ iil

:?)::: ,

(illi• :

!:;? , • •

i :iI

m=3 m=4 m=5 m=6

Figure 2: Subgraphs of G2,n achieving internal edge count F(m)

Proof Since G2,n contains two composite subcubes of type G2,n-1, assume that m0 and ml

nodes are chosen in the 0 th and 1st composite subcubes, respectively. By Property 1.5,

e2(O,n)=e2(1, n)=O;

max {e2(mo, n- 1) + e2(ml,n- 1)+rain{too, m1}}.
e2(m, n) <_ v2mi='_

First we prove by induction on m that e2(m, n) < F(m). When m = 0, 1, e2(m, n) =

F(m) = O. Assume that the inequality holds for _< m - 1. Now consider m.

e2(m,n) <

<

<

max {e2(mo, n- 1) + e2(ml,n- 1) + min{mo,ml}}
V E mi-_m

max {F(mo) + F(ml) + min{mo, ml}} (Inductive hypothesis)
VEmi=m

F(m) (Corollary 2.1).

Next we prove that there is a subgraph S m of m nodes such that the number of internal

edges in S_ is F(m). Here is how we can allocate the m nodes for Sm: Allocate [_] nodes

into the 0th composite subcube and L_J nodes into the 1st composite subcube; use the same

method recursively to allocate the nodes in each composite subcube. It is obvious that the

number of internal edges in S* is exactly F(m). I

This theorem tells us about the structure of a subgraph with exactly F(m) internal

edges--it is possible to bisect this subgraph "evenly" with exactly [_J edges between the

two pieces, which are themselves optimal with respect to their sizes. Figure 2 illustrates

optimal subgraphs of G2,n for m = 3, 4, 5, 6.

3 The case k--3

Similar to the previous section, to determine e3(m, n) for G3,n we will have to do some
preliminary work.

DEFINITION 3.1

z(i) denotes the sum of all bits in the base-3 representation of i.

Z(i,j), i <_j, denotes the sum of z(i),...,z(j).

5

....:i_i(2:1

!ii!il;i:i!i_i
i!_:::_ili_i__

ii!__i:i .
: ili •

> ii

The following five lemmas concern the properties of function Z. Their proofs can be

found in Appendix.

LEMMA 3.1 Z(0, 3i - 1) = 3Z(0, i - 1) + 3i for i > 1.

LEMMA 3.2 Z(0, 3i) = Z(0, i) + 2Z(0, i - 1) + 3i for i > 1.

LEMMA 3.3 Z(0, 3i + 1) = 2Z(0, i) + Z(0, i - 1) + 3i + 1 for i > 1.

LEMMA 3.4 Z(j,j + i - 1) > Z(0, i - 1) + i for j > i > 1.

LEMMA 3.5 Z(j,j + il + i2-1) > Z(O, il_ l)+ Z(O, i2_ l)+ il + 2i2 for j > il > i2 > 1.

We next define a recursive function G and give its closed form in terms of Z.

DEFINITION 3.2

G(O)=G(1)=O;

m _ m m _G(m) = (rn mod 3)G([_]) + (3- m mod.)G([-5-J) + m [5-] + [-5-J for m > 2.

THEOREM 3.1 G(m) = Z(O, m - 1) for m >_ 1.

Proof Similar to the proof of Theorem 2.1. In the inductive step, we consider three cases:

m = 3i, m = 3i + 1, and m = 3i + 2, and use Lemmas 3.1, 3.2, and 3.3 in the three cases,

respectively. []

COROLLARY 3.1 G(m) > G(mo)+G(ml)+G(m2)+m-max{mo, ml, m2}+min{mo, ml, m2}

for mo+ ml + rn2 = m.

Proof If at least two of m0, rnl and m2 are 0, the inequality holds trivially. If only one, say

m2, is 0, assuming that m0 > ml > 1, the derivation is almost identical to the same case in

the proof of Corollary 2.1 except here we use G instead of F and Z instead of W. If none of

m0, ml and m2 is 0, assuming that m0 _> ml __ m2 > 1, we have

G(m) = Z(O,m- 1) (Theorem 3.1)

= Z(0, mo- 1)+ Z(mo, m- 1)

> Z(0, m0 - 1) + Z(0, ml - 1) + Z(0, m2 - 1) + ml + 2rn2 (Lemma 3.5)

-_ G(mo) + a(ml) -]- a(m2) -_- m- zlz 0 -[- m 2 (Theorem 3.1). |

COROLLARY 3.2 G(m) = m log 3 m if m = 3 l for some l.

Proof Use Definition 3.2 and inductive proof on m. |

It turns out that G(m) exactly captures the quantity of interest.

THEOREM 3.2 e3(m, n) = a(m) for m < 3 _.

_:ii !iii

iiliii! !

:H :¸) .

(iiii,il/ •

ili___!ii

Proof Since G3,n contains three composite subcubes of type G3,n-1, assume that mo, ml and

rn2 nodes are chosen in the 0th, 1st and 2 nd composite subcuhes, respectively. By Property

1.5,

(?3(0, n) = e3(1, n) = 0

e3(m,n) < max {e3(mo, n- 1)+e3(ml,n- 1)+e3(m2, n- 1)

+m - max{too, T/_I, m2} -F min{mo, ms, m2}}.

Similar to Theorem 2.2, we can prove by induction on m that e3(m, n) <_ G(m), using

the above recursive definition of e3(m, n), inductive hypothesis, and Corollary 3.1.

Also similar to Theorem 2.2, a subgraph S_ of m nodes with G(m) internal edges can be

constructed by allocating [_] nodes into each of the first m mod 3 composite subcubes and

[._J nodes into each of the remaining composite subcubes; the same method is then used

recursively to allocate the nodes in each composite subcube. []

:%

,?i •

i _

>i

4 The case k=4

Similar to the previous two sections, to determine e4(m, n) for G4,n we will have to do some

preliminary work. The following four lemmas concern additional properties of function W.

Their proofs can be found in Appendix.

LEMMA 4.1 W(0, 4i - 1) = 4W(0, i - 1) + 4i for i k 1.

LEMMA 4.2 W(0, 4i) = W(0, i) + 3W(0, i - 1) + 4i for i > 1.

LEMMA 4.3 1¥(0,4i + 1) = 2W(0, i) + 2W(0, i - 1) + 4i + 1 for i > 1.

LEMMA 4.4 W(0, 4i + 2) = 3W(0, i) + W(0, i - 1) + 4i + 2 for i 2 1.

We next define a recursive function H and show that it is the same function as F defined

in Section 2.

DEFINITION 4.1

H(0) = H(1)= 0;

H(m) = (m rood 4)H(r4]) + (4 - m rood 4)H(L4J) + m - [_-3 + for m >_ 2.

THEOREM 4.1 H(m) = W(O, m - 1) for m > 1.

Proof Similar to the proof of Theorem 2.1. In the inductive step, we consider four cases:

m = 4i, m = 4i + 1, m = 4i+ 2, and m = 4i + 3, and use Lemmas 4.1, 4.2, 4.3, and 4.4 in

the four cases, respectively. []

COROLLARY 4.1 H(m) > H(mo) + H(m_) + H(m2) + H(m3) + m - max{mo, ml, m2, m3} -t--

min{m0, ms, m2, m3} for mo + ml + m2 + m3 = m.

i?

'i

_ i,_iiii:i_

iii:i_;ii_!_i_i:_:?i
i U i_i_;i:"

ii:ii?i_i?i

Proof If at least three of m0, ml, m2 and m 3 are 0, the inequality holds trivially. If only

two, say rn2 and m3, are 0, assuming that m0 _> m_ _> 1, the derivation is almost identical

to the same case in the proof of Corollary 2.1 except here we use H instead of F. If at most

one of m0, m_, m2 and m3 is 0, assuming that m0 _> m_ _> m2 _> m3, we have

H(m) = F(m) (Theorems 2.1 and 4.1)

>_ F(mo + m_) + F(m2 + m3) + m_ + m3 (Corollary 2.1)

-- r(mo) ' r(ml) '_ r(m2) "_- r(m3) + ml --_ m2 --}-2m3 (Corollary 2.1)

= H(mo)+H(m_)+H(m_)+H(m3)+ml+m_+2m3 (Theorem 4.1).|

COROLLARY 4.2 H(m) = m log 4 m /f m = 41 for some l.

Proof Use Definition 4.1 and inductive proof on m. |

THEOREM 4.2 e4(m, n) = H(m) for m < 4 n.

Proof Since G4,n contains four composite subcubes of type G4,n-1, assume that m0, ml, m_

and m3 nodes are chosen in the 0 th, i st, 2 nd and 3 _d composite subcubes, respectively. By
Property 1.5,

e4(0,n) = e4(1,n) = 0

e4(m, n) <_ max {e4(mo, n - 1) + e4(ml, n - 1) + e4(m2, n - 1) + e4(m3, n - 1)
V E mi:m

-}-m -- max{mo, ml, r/t2, m3} -_- min{?Yto ' ml ' m2 ' m3}}"

Similar to Theorem 2.2, we can prove by induction on m that e4(m, n) _ H(m), using

the above recursive definition of e4(m, n), inductive hypothesis, and Corollary 4.1.

Also similar to Theorem 2.2, a subgraph S_ of m nodes with H(m) internM edges can be

constructed by allocating [_] nodes into each of the first m rood 4 composite subcubes and

[_J nodes into each of the remaining composite subcubes; the same method is then used

recursively to allocate the nodes in each composite subcube. |

5 The case k>5

Given that essentially the same approach defines the structure of optimal subgraphs for three

successive values of k, one might suspect a general pattern for all k. It turns out that this

is not the case and that for k > 5 the decomposition that once defined optimal subgraphs

now defines suboptimal ones. Consider the example of k = 5, m = 6. If we partition in one

dimension into one subgraph of two nodes and four subgraphs of one node each we achieve

six internal edges (a ring of five nodes, with one extra node hanging off the ring). However,

it is possible to embed the six node graph illustrated in Figure 2 into Gs,_, and achieve seven

internal edges. An ability to embed subgraphs of G2,_ into G_,_ turns out to be what is

needed to characterize the optimal subgraphs of G_,_ with m nodes, when k _> 5 and m < 2 _.

To prove this, we need the following theorem.

_:i__!iiii/ii

i _:iii!_ili_i_i

i ¸' i/: i

H ,, •

%ii : •

iiii!iiii!iiii!ii!i

_i/21__

H:?_ii:•: /

ill2_!

k-1
THEOREM 5.1 F(m) > _i=0 F(mi)+m--maxo<i<k-l{mi}+mino<_i<_k_l{mi} for 5-'k-1-- z-_i=0 ?hi
rrt.

Proof Assume that mo >_ ml > ... >_ ink-1 >_ O. Let l be the smallest index such that

l m l-1 _--]k- 1_i=o mi > Clearly, m and m_i=o mi < -_ i=t -_.- _-. mi > This also implies that l < k - I. So

/<_.

r(m)
l k-1 l k-1

>_ r(_-_ mi) + F(_ mi) + min{_--_, mi, _ rni} (Corollary 2.1)
i----0 i=/+1 i--=0 i=lq-1

k-1

_> _ F(mi) + A + B + C (Corollary 2.1 repeatedly),
i=0

where

and

l k-1

i=0 i=/+1

l-1 l

B--Emin{mi, E ml},
i=0 j=i+l

k-2 k-1

C= _ min{mi, _ mi}.
i=/+l j=i-t-1

Next, we wish to prove that A + B + C _> ra - mo. + ink-1. Since _i=ol mi _> -_, A =m
_k-1i=/+1 mi" Since l < _ and k _> 5,/+1 < k-2. So there is at least one term in C. Therefore,

C _> mk_l. How largeis B? If/= 0, then B = 0 and A+B+C >_ _i_=-_1 rai+mk_l = m-too+

rnk__. If/= 1, then B = m_ and A+B+C >_ _i_ mi+ml +rnk_l = rn-mo+ml__l. Now
1

assume that l _> 2. B must have at least two terms. If mh < _i=h+l mi for all h = 0,..., I-2,
then B v'z-2 m _-_ z-_= z_.i=0 i+rn_ and A+B+C >_ _i=l+1 mi+_i=omi+ml+mk-1 >--rn--mo+mk_l.

(choose the smallest h if there is more thanIf there is h in [0, l- 2] such that mh > _i=h+l mi
h-1 l

one), then B > _i=0 mi + _i=h+l mi and A + B + C > _k-1 h-1 l-- -- i=l-t-1 rai + _i=0 mi + _i=h+l mi nL

ink-1 >_ m - mo + mk'l. |

THEOREM 5.2 ek(m, n) = F(m) for m < 2 n and k >_ 5.

Proof Since Gk,n contains k composite subcubes of type Gk,___, assume that mi nodes are

chosen in the ith composite subcube for 0 < i < k - 1. By Property 1.5,

e_(0, n) = ek(1,n) = 0;
k-1

max {_--_.e_(mi, n- 1)+ m- max rni + min {mi}}.
-- O<i<k-I { } O<i<k-1< vEm = i=0

Similar to Theorem 2.2, we can prove by induction on m that ek(m, n) < F(m), using

the above recursive definition of ek(rn, n), inductive hypothesis, and Theorem 5.1.

f
(l-1) 2]

I
dim 1

dim 2

l (1-1)

Figure 3: Construction procedure for C2(m)

Also similar to Theorem 2.2, a subgraph S_ of m < 2 n nodes with F(m) internal edges

can be constructed by allocating [_] nodes into the 0 th composite subcube and [_J nodes

into the 1_t composite subcube; the same method is then used recursively to allocate the

nodes in each composite subcube. !1

What then of subgraphs of size m > 2n. 7 For this case we assume that either k is so large

relative to m that an optimal subgraph cannot include wrap-around edges, or that the graph

of interest is a mesh (without wrap-around edges) whose local structure is like that of Gk,n. tn

other words, we now also consider multi-dimensional rectangular meshes, structures we will

call n-D meshes. Intuition tells us that the maximum number of internal edges ek(m, n) can

be reached when the m nodes are placed as tightly as possible to form a "cubish" polyhedron.

In the remainder of this section, we shall prove that our intuition turns out to be correct.

In any dimension i, a subgraph of m nodes can be partitioned into layers, each of which

contains nodes with the same coordinate in dimension i. Furthermore, there may be edges

(legs) between adjacent layers. We give the following definition of a cubish polyhedron.

DEFINITION 5.1

For any rn >_ 2, there exist l >_ 2 and 1 < i < n such that li-l(l- 1) n-i+1 < m _<

#(l - 1) n-i. Let r5 = m - li-l(l - 1) n-i+1. The n-D cubish polyhedron of m nodes in Gk,n,

denoted as Ca(m), is defined recursively as follows.

• Cl(m) is a line of m nodes.

• To construct Cn(?Tt), we .start with an _ x !l- 1) x..- x (l- 1) n-D mesh. For

i-1 n--_+l

the remaining 6 nodes, we construct an (n - 1)-D layer Cn-1(6) and add it on the top

of the n-D mesh in dimension i.

The above procedure of constructing Ca(m) is very much like making a ball of yarn.

The idea is to fill in each side (dimension) with yarn (nodes), one side (dimension) at a

time. Figure 3 illustrates the construction procedure for C2(m), and Figure 4 illustrates the

procedure for C3(m). Let en(m) be the internal edge count in a cubish polyhedron Ca(m).

Obviously, en(m) = lea_l({5) q- {5] --{- en(m - ¢_).

10

: :" : : _ ::"_<"::" :/'::::_::' ::: ::/ :: -:= • : : ZH¸:: :/::: Z:/:: •_/_:_`_:_•:_::_:•:_i_L!/:_•_:?:_:`_Z:_:_•/_i_i_i!_i_i_i_i_ii_

3'

L t,

*'dirn 1

_] _____
dim 2

Idim 3

/7 7q

Figure 4: Construction procedure for C3(m)

rl
II

rl

ii

--i'_1 lit

rl Ill

--l--F- -_
--_--r-_--

ilrl

__J__L_J____

itlll

Iiiii

iiiill
illlll

i I t i t i
r i 1 i t i

I I I

I I I I I

----L---I---- L - -I - -- L -- .J -- --
I I

I I

i I

--r-"l--

r 1

_ L_..J__

t 0

I I

-r--n--

i t

i i

IIIIIITII
IIIIIIlll

2,,,,, _-I--
iiiiii I..... F-_--P-_--r-_--

Illlrl

..... L_J_--L_d__L_J__
IIIIii

Iiiiii

II

.... L--J__L_d__
I li

i iI-- "l----F--n----

II

__ _l__L_J__
II

7 ''-- 1--

IIIIlllll
fllllllll

Figure 5: Rearrange Sm (in Gk,2) without decreasing e(Sm

THEOREM 5.3 Ca(m) has the maximum internal edge count among all subgraphs Sm of m

nodes in Gk,n (or in n-D meshes), when the warp-around edges can be discounted.

Proof We prove by induction on n. When n = 1, the claim is trivially true. Assume that

the claim holds true for n - 1. Now consider the case of n. Let Sm be any subgraph of m

nodes with e(S,,) internal edges in Gk,n. We wish to prove that e(Sm) <_ en(m).

We can view Sm as having several (n - 1)-D layers of nodes stacked on each other in a

certain dimension. Rearrange the order of the layers by sizes (node counts) and within each

layer rearrange the nodes into an (n - 1)-D cubish polyhedron. See Figure 5 for an example

(The numbers in the figure are the sizes of the layers). If after this rearrangement there are

h layers and si is the size of the i th layer with Sl <_ s2 < ... <_ sh, then by the inductive

hypothesis we have

e(Sm) _ [en-l(81) Jr- 81] --_ [en_l(82) + S2] q-.-.-Jr- [en-l(Sh-1) -{- 8h_1] --_ en_l(Sh).

Note that sl + s2 + ... + Sh_ 1 is the number of edges (legs) between adjacent layers.

We have a few observations about the new subgraph obtained. First, layers in each

dimension (not just the dimension chosen in the rearrangement) are stacked on each other

by sizes. Second, h _> l. Assume that h < l- 1 for all dimensions. We must have m <

(l- 1) n, which is impossible. Third, sl _< li-_(l - 1) '_-i. Suppose not. We must have

m = Sl + ... + Sh Z hsl Z lsl > fi(l - 1) n-i, which is impossible.

11

• i:/

ii _i__ :

!:iiiilliii!i::

:ili•!;i::!i¸ :

iili% •

,_ i _

_ i _ ,

ii_

Let us go back to the induction step, in which we assume that en-l(m) is maximum and

wish to prove that en(m) is maximum. We need another induction on m to prove this. When

m = 1, 2, en(m) is obviously maximum. Assume that en(j) is maximum for j < m - 1. Now

consider the case j = m. We know by the inductive hypothesis that

¢(Srn) _ [en-l(81) + 81] q- en(?n -- 81).

By Definition 5.1, we know that C_(m - (5) is in fact an n-D mesh with Ii-1(l - 1) n-i+1

nodes. C_(m- 5) can also be viewed as having l (or l - 1 if i = 1) layers stacked on each

other, where each layer is an (n - 1)-D mesh and has L nodes. Clearly,

L __

(I- 1) n-1 if i= 1;Ii-2(l- 1) n-i+l if i _>2.

We can show that Sl < L + 5. Suppose not. We must have m >_ hs 1)_ 181 _ IL + 15 >

lL + (_ >_ m, which is impossible. To continue, we consider two cases.

Case 1. Sl _< 5. We must have li-l(l - 1) _-i+l _< m- 81 < li(1- 1) _-i. Let m- 81 =
li<(l - 1) n-i+1 + (5'. Then 81 + 5' = (5. So

en(m - 81) : [en_l(51) nt- (5I] --_ en(li-l(l - 1) n:i'}-l)

a,nd

Therefore,

en_l(81) --_ en_l(5 }') __ en-l(5).

_(&) [en-1(81)-1-81]-1-en(m- 81)

: [en-1(81)4-81]--]-[en_l(_51)-4-(5/]-]-en(li-l(l- 1) n-i+1)

[en_l((5) -I-5]-q-en(li-l(l -- 1) _-i+1)

= e_(m).

Case 2. Sl > 5. Since 81 < L +5, we must have (I'- 1)L < m- 81 < l'L, where I' = l- 1

if i= landl'=lifi>2. Let m-sl=(l'-l)L+5',whereS'<L. Thens1+5'=L+5.
So

en(--Z -- 81) : [en_l((_') + 5'] + en((l'-- 1)L).

Therefore,

e(Srn) _ [en_1(81)+81]-_-en(m-- 81)

= [en-1(81) -_- 81] _- [en-l({ 5/) --_ (5/] -_- en((l'-- 1)5).

On the other hand, we have

en(m) = [en-l(5) + 5] + [enq(L) + L] + en((l'- 1)L).

12

: 7: ¸

: /:i (i_:i,

ilii

:5 • •

To show that e(Sm) <_ en(m), all we need to prove is that for sl + 6' = L + 6,

en_l(81) -}- en_l(6t) _ Cn-l(L) q- Cn_1(5).

The inequality is trivially true when sl = L. Let us consider the following subcases.

Subcase 2.1. Sl < L. We will prove by yet another induction on dimension n - 1 that

en-l(81)-_en-l(6') <_ Cn_l(L)+en_l(6), where 81,6' < L and 81+6 t = L+& When n-1 = 1,

it is a trivial case. Assume that the inequality holds for dimension n - 2. Now consider the

case of n- 1. Without loss of generality, assume that sl _> 6' (The case sl < 6' is symmetric).

Initialize A and B to be Cn-l(.sl) and Cn-1(6'), respectively. The node count in A, denoted

as IAI, is then Sl, and IBI is 6'. Consider A as a cubish polyhedron of several (n- 2)-D layers

of size L' each plus one more layer of a _< L' nodes and a legs on the top, and B as a cubish

polyhedron of several (n - 2)-D layers of size L" each plus one more layer of b <_ L" nodes

and b legs on the top. Since IAI _ IBI, A completely includes B. So L' >_ L". We next apply

the following step to move nodes from B to A. If there is a layer in B with size no greater

than L - IAI, move the layer together with its legs to A and rearrange two polyhedrons into

cubish polyhedrons again (Note that after the move A, B, L', L", a, and b are updated). It is

clear that this step does not decrease the total edge count in the two polyhedrons. Apply the

above step until for any layer in B its size is larger than L -]A I. We must have L - IAI < L I

and a + b > L'. Since a, b _< L', by the inductive hypothesis,

en-2(a) + en-2(b) < en-2(L') + en-2(a + b - L').

Removing the top layer of a nodes and the top layer of b nodes from A and B, respectively,

and adding a layer of L' nodes and a layer of a + b - L' nodes to A and B, respectively, we

get IAI = L and IBI = 6. So

en_l(81) _t_ en_l(6 I) _ en-t(L) + en-t(6).

Subcase 2.2. st > L. Assume that Sl = L + g, then 6 = 6' + g. We have

en-l(81) = [en-2(g) + g] + en-l(L).

We can show that 6' >_ (l- 1)g. Suppose not. We must have m = (l I- 1)L+6'+.sl <

(l'- 1)L+(l- 1)g+L+g <_ l(L+g) = lsl <_ m, which is impossible. We know that

6' < L. If all dimensions in C__1(6 I) have at least I layers, then 6' > In-2(l - 1) > L, which

is impossible. So there must be a dimension in C_-1 (6') which has fewer than I layers. Since

6' >_ (l - 1)g, there must he a layer with at least g nodes. So we can move the layer of g

nodes together with its legs from Cn-I(sl) to C_-1(6') safely and get

Therefore,

[en-2(g) + g] + en-l(6') _< en-t(6' + g).

en_l(81) --_ en_l(61) = Ca-l(L) "}- [Cn-2(g) -{- g] nt- en--1 (5')

gn-1 (L) + Cn-1 (61 "-_ g)

= en-l(L)+en-l(6).|

13

: 'i i_!_

_i i_ii ! i _

6 Applications to Partitioning

The results so far, besides having theoretical interest, have practical apphcations to par-

titioning. There are different ways in which k-ary n-cubes are appropriate descriptions of

parallel computations. One way is when at the lowest level the communication pattern of the

computation is that of a k-ary n-cube, e.g., some mesh-oriented computation with periodic

boundary conditions. Another is when the communication patterns reflect a k-ary n-cube

because the computation is about a k-ary n-cube. For instance, the computation may be a

direct-execution simulation of an application running on an architecture whose communica-

tion network is Gk,n [1, 5]. We partition the simulation in order to balance the simulation

workload and minimize communication overheads. Another instance is when the computation

is written as though it executes on all nodes of an k-ary n-cube architecture, but the program

is to be "folded" onto fewer processors, with subgraphs defined by the folding reflecting a set

of tasks that are multi-tasked on one node of an actual machine [7].

To illustrate these points we show how our results may be used in the context of branch-

and-bound algorithms for partitioning. Our object here is not to propose the specifics of

such an algorithm nor study its performance. The ability to construct lower bounds on

communication costs based only on subgraph node size is one that can be used in a variety of

branch-and-bound formulations, and for a variety of partitioning problem formulations. We

will illustrate its use in one specific case.

The results can also be used to show the optimality of some curiously shaped partitions,

an example of this application is shown.

6.1 Lower Bounding in Branch-and-Bound

Consider a data parallel computation whose communication structure can be viewed as a k-

ary n-cube, or related structure. The nodes of the graph are weighted individually to reflect

computation costs, the edges of the graph are also weighted to reflect communication costs. It

is assumed that communication between co-resident nodes is free, alternatively, with minor

modifications one could model such internal communication with smaller--but nonzero--

costs. We wish to find a rectilinear partitioning [9] of the graph into P subgraphs such that

the bottleneck cost (the maximum, among all subgraphs, sum of the total node weights and

the total external edge weights of any subgraph) is minimized. A rectilinear partition is

one in which the separating cuts are all hyperplanes of the form xi = cij, a constant. A

rectilinear partition of an 8 × 8 mesh is illustrated in Figure 6. Rectilinear partitions preserve

the nearest-neighbor communication structure of mesh-like communication patterns, as well

as having other desirable properties [9].

Our earlier work on rectilinear partitioning established that for dimensions larger than

two, the problem of finding an optimal partition is intractable. Furthermore, that work

did not explicitly include communication costs. The results in this paper can be used in

branch-and-bound algorithms [3] for finding rectilinear partitions, as we now show.

A node in the branch-and-bound search tree reflects a set of cuts already made, the initial

14

iii!,i!il
::i__

_ _i:_ '

/

(

(

(

)

)

)

Figure 6: Rectilinear partition of an 8 × 8 mesh

node is empty. The children of a node reflect various ways of choosing one additional cut.

If there are c cuts to be made, the search tree has depth c + 1. Every solution is a leaf of

the search tree. We assume that the relative positioning of the cut associated with a level

is known a priori, e.g., the cut in the third dimension whose cut coordinate is fifth smallest.

Selecting the cut order is part of the branch-and-bound solution, but our focus here is on the

lower bounding function needed for the branch-and-bound approach.

For every node N in the search tree we associate a function bnd(N), that provides a lower

bound on the bottleneck cost of any solution rooted at that node. bnd(N) can be used to

direct the search in different ways, e.g., in choosing the next node to explore or in pruning the

search beyond that node because a known solution is better than any solution rooted at N.

We are interested in defining an easily computed function bnd(N). Each node N reflects the

partitioning of the graph into some number of regions; furthermore, under our assumptions

we know how many further divisions will be applied to each region. Consider a region R, to

be further divided into .s subregions, suppose that the number of nodes in region R is r, that

the sum of all node weights in R is WR, and that the edge weights of all edges with at least

one node in R are sorted in list E in non-decreasing order.

We wish to construct a lower bound Ib(R) on the minimal bottleneck cost due to any

possible subdivision of R into s subregions. The method we use relies on an ability to compute

sizes of subregions ml, ms,..., ms, mi > 1 for all i, and _1 mi = r, such that _ C(mi)

is minimized, where C(mi) is the cost (external edge count) of an optimal subgraph with m_

nodes. Note that since all nodes in a k-ary n-cube have the same degree d, which is n for

k = 2 and 2n for k _ 3, we have that C(m_) = dmi-2ek(mi, n). Solution to this minimization

problem--even when modified to include a constraint mi < B for all i, is straightforward

using dynamic programming.

The bound construction of Ib(R) has three phases. First, we compute the vector m =

(ml,..., ms) that minimizes 7}.iS__l C(m{); this reflects an idealized assignment of numbers

of graph nodes to processors in such a way that the total number of edges cut (summed

over all processors) is minimized. Second, we compute a vector w whose i th component

(w{) is the sum of the weights of the first C(m{) edges in E. w reflects lower bounds on

communication costs under assignment m. Without loss of generality suppose that w_ is the

15

i:!!i1;

/i

,::j i! _ i!_i__

!ii:!_i!iiiii(_
i_ • :i: ¸

i_/i /i •

?

iilii!

(a) Slack is less than total computation

[] Computation

[] Communication

(b) Slack exceeds total computation

Figure 7: Computation of lower bound on bottleneck cost

largest component. We define the slack of w as

8

slack(w) = _-_'_(wl - wi).
i=2

Third, we consider the following two cases.

The first case of interest is when slack(w)< Wn. This means that if we treat the total

computational workload WR as divisible into arbitrary pieces, we can give each processor

except the first enough workload to bring its total cost up to Wl, and still have workload

remaining. The remanent may be divided evenly among the s processors. This is illustrated

in Figure 7(a). So

_'-_i= 1 WiIb(R)= WR+ s
8

The correctness of the bound is evident by the fact that the total load (sum of computation

and communication) is minimized, and that no processor is ever idle.

The second case occurs when slack(w)> WR, as illustrated by Figure 7(b). In this case the

bottleneck is entirely communication induced, and the maximum number of nodes assigned

to a processor must be driven down. This may increase the total communication cost, but

will decrease the bottleneck cost. To reduce the bottleneck cost we constrain the assignment

mi < B for all i; for each B considered we may compute the slack of the corresponding

weight vector, and determine whether it exceeds WR. Using a binary search on B we may

find the least value B* such that the corresponding slack exceeds WR. Let w = (wl,..., ws)

and w' = (w_,..., w_) be the weight vectors derived from using B* - 1 and B* as constraints,
respectively. Then we make the lower bound to be

lb(R) = min{ WR + _iL1 wi ,, Wl}.
8

We need not consider any bottleneck derived from using B > B*, since the bottleneck cost

is monotone non-decreasing in max{rn_}, which is monotone non-decreasing in B. We need

not consider any bottleneck derived from using B < B* - 1, since in this case no processor is

idle, and the total communication cost is at least as large as that derived from using B* - 1.

Clearly the solution of dynamic programming equations is the most expensive part of

this bound construction. It may be avoided by using lower bounds on external edge count

16

i_i̧_i!ii!:

i:i__:ii:i:_ili_' ; •

i:!:ii_i ¸ _:-

!i!_i_ii__ iii!i

_ii!_i i •

iii _

: !i!i;_

function C that have concave closed form expression. Such bounds have been developed in

[10]-

min- milogmi for k = 2, mi <_ 2n;
Bk(mi, n) = 2min - mi log mi for k > 2, mi _< 2n;

2rain - n(mi - ml n-1)/n) for k > 2, mi > 2 n.

Since Bk(mi, n) is concave in m_, the theory of majorization [6] tells us that to mini-

mize s _ _ =)--_i=lB_(mi, n) subject to 1 < mi < B and s_=l mi = r we assign mi B for

i = 1,2,..., [(r- s)/(B- 1)J, with m[(_,s)/(B-1)J+l = (r- s) mod (B- 1) + 1, and mi = 1
for the remainder.

The procedure above shows how to bound from below the potential least bottleneck cost

for each region reflected by node N. Applying this method to each such region, we define

bnd(N) as the greatest of these lower bounds, i.e.,

bnd(N) = max {Ib(R)}.
VREN

It should be noted that for a given number of processors P, and a given total workload

_VR, the assignment problem whose minimized bottleneck cost is least is not necessarily one

where the workload is spread evenly. For instance, consider an 8 × 8 torus to be partitioned

into two regions. If each node has weight 4 and each edge has weight 1, then the optimal

solution is to bisect the graph into two equal pieces, at a cost of 4 × 3248 = 136. However, the

graph that weights one node by 128 and all other nodes by 128/63 is optimally partitioned by

isolating the heavy node, at _ cost of 128 + 4 = 132. Realization that minimized bottleneck

costs need not be associated with evenly spread workload (and equi-partitions) leads us to

the careful construction of bnd(N) given.

6.2 Identification of Optimal Partitions

Another application of our results is to identify optimal partitions (with respect to the bot-

tleneck metric), even when those partitions are not entirely regular. Consider the problem of

partitioning Gs,2 (an 8 × 8 torus) into 13 subgraphs, assuming that all nodes have common

computation weight w and all edges have unit communication cost. The problem clearly does

not divide evenly. The minimal cost to a processor of having m nodes is wm + C(m), where

C(m), the external edge count of the optimal subgraph with m nodes, is 4m-2es(m, 2); note

that the cost function increases monotonically in m.

The processor with the most nodes assigned will have at least [64/13] = 5 nodes. The

optimal subgraph of Gs,2 with 5 nodes is a square, with an attached singleton node. As

illustrated in Figure 8, it is possible to nearly tessellate Gs,_ with this optimal subgraph, the

only exception being one subgraph (the center square) which is a subgraph itself of the optimal

subgraph. The optimality of this partition derives from the fact that wm+ C(m) is monotone

non-decreasing in rn, so that the bottleneck cost max{win1 + C(m_),..., wm_3 + C(m_3)} is

minimized when the mi's are nearly equal. The partition shown achieves the lower bound of

5w + C(5) = 5w + 10.

17

::!::(i_i!i! :::;_:_:_::;:H;:; _ u::::__::: :_ _ : • _:://: :__/: • : •::•:•:¸¸:i::::) :i:ii : i •_:_ii::i/i_: i::;•::):?• _:_5:!;i:iiii:iJi:iiil!::JLi!:/i/iii::(i_•!i_)!!_!i_i_!i_i!i!iii!_ii_ii_i_!_iiiiiiii_i_iiiiii!iiii_i_!_i_i_ii_i!i_i_iiii_i%iiiiiiiii_iiiiiii_i_iiiii_i_iiiiiiii_iiiiiiiIiiii_iii_i_i_iiiiiii_i

ii/

?Ui :

:/i

m

m

m

Figure 8: Optimal partition of G8,2 into 13 subgraphs

There is clearly a general principle at work here, for uniformly weighted graphs. If there

are M nodes to be assigned to P processors, then at least one processor will receive m =

[M/P] nodes. When the processor cost function is monotone non-decreasing as a function of

the number of nodes assigned to it, wm + C(m) is a lower bound on the optimal bottleneck

cost, C being the appropriate minimized function for communication cost. If it is possible

to partition the graph so that no processor has cost greater than wm + C(m), then that

partition is optimal.

• i _ii_i

7 Conclusions

A subgraph of a k-ary n-cube can be viewed as having internal edges and external edges.

This paper describes how to construct subgraphs that are optimal in the sense of maximizing

the number of internal edges, thus minimizing the number of external edges, given m nodes

in the subgraph. While these results have combinatorial interest, they also have serious

applications to problems in parallel processing. We show, for instance, how to apply these

results in the context of branch-and-bound algorithms for partitioning a k-ary n-cube whose

nodes and edges have general (positive) weights. Lower bounds lie at the heart of any branch-

and-bound algorithm, and our results provide the critical means needed to compute sharper

bounds than those that ignore communication overheads. We also show how our results can

be used to demonstrate the optimality of certain irregular partitions, k-ary n-cubes arise

frequently in studies of parallel processing. The results and applications developed here help

us to better understand these important graphs.

Appendix 4

PROPERTY 1.5 In each ith composite subcube (0 < i < k - 1) of type Gk,n-1 in Gk,n, choose
k-1

mi nodes, and define m = _i=o mi. The number of edges with endpoints among these m

nodes but in different composite subcubes is no larger than min{m0, ml} for k = 2, and is no

larger than m - maxo<_:<k-l{mi} + mino<i<k-l{mi} for k > 3.

4To referees: Proofs in this section have all been verified by programs.

18

?

: k! ;: :: •

Proof We observe that if the k composite subcubes of type G_,n-a are placed from left to

right, any node in one composite subcube is connected to exactly one node in its neighboring

composite subcubes. When k = 2, it is trivial that the number of edges with endpoints

among the m nodes but in different composite subcubes is no larger than min{m0, ml}. Now

consider k _> 3. Clearly, the number of edges with endpoints among the m nodes but in

different composite subcubes is no larger than

min{mo, ml} + min{ml, m2} +... + min{mk_2, rn__l} + rain{ink_l, mo}.

Define i 4- 1 = i + l(mod k) and i - 1 = i - l(mod k). Let mp = maxo<_i___k__ {mi} and

mq = mino<i<k_l {mi}. Place k pairs (mo, ml), (rrtl, m2), ..., (mk-2, ink-l), (ink-l, m0) in a

circle clockwise. Cut the circle into two chains C_ and C2 such that C_ = {(rnp, mpicl),...,

(mq-1, rnq)} and C2 = {(mq, mq$_),..., (mp-_, rap)}. Clearly,

and

Consequently,

q

min{mi,mdq} <_ Y_.

(mi'mi$1)6Ca i=p4-1

p-1

min{mi, md_l} <_ _ mi.

(mi ,mi__l)6C2 i-----q

mi

h-1

min{mi, mi4_l }
i=0

= _ min{ml, mi$1} +

(mi,rn41)6C1

q p-1

i=p-b l i=q

k-1

= E mi -- mp + mq
i=0

= m- max {mi}+ min {ml}.[]
0<i<k-1 0<i<k-1 - -

LEMMA 2.1 W(i, 2i - 1) = W(0, i - 1) + i for i >_ 1.

min{mi, miq_l }

(mi,mi$1)6C2

Proof We induct on i. When i = 1, it is trivial that 14/-(1, 1) = W(0,0)+ 1. Assume that

the equation holds for < i - 1. Now consider i.

W(i, 2i - 1) W(i - 1, 2i - 3) + w(2i - 2) + w(2i - 1) - w(i - 1)

W(O,i- 2) + (i- 1) + w(2i- 2) + w(2i- 1) - w(i- 1)

(Inductive hypothesis)

19

iii_ili:iliii!i!_

/] •

i(_!!

,Zii. ! :

= W(0, i-2)+(i-1)+w(2i-1) (Sincew(2i-2)=w(i-1))

= w(o,i- 2) + (i- 1)+ 1)+ 1 (Since w(2i- 1)= ,,(i- 1)+ 1)
= w(o,i-1)+i.|

LEMMA 2.2 |¥(i + 1, 2i) = W(0, i - 1) + i for i _> 1.

Proof Straightforward by using Lemma 2.1. |

LEMMA 2.3 W(j, j + i - 1) _> VV(0, i - 1) + i for j > i > 1.

Proof We induct on i. When i = 1, it is obvious that W(j,j) >_ W(0,0)+ 1. Assume that

the inequality holds for _< i - 1. That is, for jt > i' > 1 and i_ _< i - 1,

W(j',j'+i'-l) > W(O,i'-l)+i'. (1)

An important implication of the inductive hypothesis is that when j_ + i t _< 2b for some b, if

we replace all parameters of W in (1) by their (2 b - 1)-complements, we have

W(2 b-i',2 b-l) _> W(2 b j'-i',2 b-j'-l)+i'. (2)

Now consider i.

Case 1. There exists 2b in (j,j + i - 1] for some b, and j + i - 1 also has b + 1 bits and

starts with 1 in its base-2 representation. By (1) and (2),

W(j, 2 b-l) _> W(j+i-2 b,i-1)+(2 b-j). (3)

Removing the highest bit 1 from 2b,... ,j + i- 1,

W(2b,j+i-1) = W(O,j+i-2 b-1)+(j+i-2b). (4)

Adding (3) and (4),

W(j,j +i- 1) > W(O,i- 1)+ i.

Case 2. There is no number equal to 2 b in (j, j + i - 1] for any b. We then know that

j,...,j + i - 1 must all have the same number of bits, say b + 1, and the same highest bit

1. Let Pa "" "Pt be the longest common prefix of the base-2 representations of j,..., j + i - 1.

Let p=pl.2 b+'''+pt'2 b-t+1. Clearly, p_< j andpl > 1. Removing the highest t bits

Pl • "'pt from j,...,j + i- 1,

W(j,j+i- 1) _> W(j-p,j+i-p- 1)+i.

Now we wish to show that W(j - p,j + i - p - 1) > W(0, i - 1), or equivalently W(j - p,j +

i-p-1)- W(O,i-1)_> O. Ifj-p<i,

W(j- p,j + i- p- 1)- W(0, i- 1) = W(i,j+i-p-1)-W(O,j-p-1)

_> j-p (By (1))

> 0.

2O

If j - p > i, there must exist 25' in (j - p, j + i - p - 1] for some b_ < b since the highest bit

in j - p is not the same as the highest bit in j + i - p - 1. By Case 1,

W(j -p,j+i-p- 1)- W(0, i- 1) > i > 0. |

LEMMA 3.1 Z(0, 3i - 1) = 3Z(0, i - 1) + 3i for i >_ 1.

Proof We induct on i. When i = 1, Z(0, 2) = 3Z(0, 0) + 3 = 3. Assume that the equation
holds for < i - 1. Now consider i.

Z(0,3i-1) = Z(0,3i-4)+z(3i-3)+z(3i-2)+z(3i-1)

= 3Z(0, i- 2)+ 3(i- 1)+ z(3i-3) + z(3i- 2)+ z(3i- 1)

(Inductive hypothesis)

= 3Z(O,i-2)+3(i-1)+z(i-1)+z(3i-2)+z(3i-1)

(Since z(3i- 3)= z(i- 1))

= 3Z(0, i-2)+3(i-1)+z(i-1)+z(i-1)+l+z(3i-1)

(Since z(3i - 2) = z(i - 1) + 1)

= 3Z(0, i 2)+3(i-1)+z(i-1)+z(i-1)+1+z(i-1)+2

(sincez(3i- 1) = z(i- 1)+ 2)
= 3Z(0, i- 1)+ 3i.|

LEMMA 3.2 Z(0, 3i) = Z(0, i) + 2Z(0, i - 1) + 3i for i > 1.

Proof Straightforward by using

LEMMA 3.3 Z(O, 3i + 1) = 2Z(0,

Proof Straightforward by using

LEMMA 3.4 Z(j, j + i -

Proof Use the proof of

specific, in the inductive

Case 1. There exists

Lemma 3.1. |

i)+Z(0, i-1)+3i+lfori>_ 1.

Lemma 3.2. |

1)>Z(0, i-1)+iforj>i> 1.

Lemma 2.3, but change W to Z and base-2 to base-3. To be more

step, consider the following two cases.

3bor2-3 bin (j, j + i -1] for some b, andj+i-lalsohasb+l

bits and starts with 1 or 2, respectively, in its base-3 representation.

Case 2. There is no number equal to 3b or 2 • 3b in (j, j + i - 1] for any b. []

Before we go to prove Lemma 3.5, we need following claims.

CLAIM 1 Z(j,j + i- 1) _> Z(O,i- 1) for j >_ 0 and i >_ 1.

Proof Trivial by Lemma 3.4. |

CLAIM 2 Z(l - i, l - 1) _ Z(I - j - i, l - j - 1) + i for j > i > 1, j + i < l and l = 3b or 2.3 b

for some b.

21

Proof Replace all parameters of Z in Lemma 3.4 by their (l - 1)-complements. []

CLAIM 3 Z(I-i,l-1)> Z(l-j-i,l-j-1) forj>_O,i>_ 1, j+i<_l andl=3 5 or 2.3 b
for some b.

Proof Replace all parameters of Z in Claim 1 by their (l - 1)-complements. []

LEMMA 3.5 Z(j,j + il + i: - 1) > Z(0, ii - 1) + Z(0, i2 - 1) + il + 2i2 for j >_ il >_ i2 >_ 1.

Proof We induct on il + i:. When il + i2 = 2, we must have i_ = i_ = 1. It is obvious that

Z(j,j + 1) _> Z(0,0)+ Z(0,0)+ 3. Assume that the inequality holds for _< il + iu - 1. That

is, forj'>i_ >i S > landi t+i__<i_+i_-l,

' 1)+ z(0," 1)+ ""' "_-1) > Z(0,_I _ _+2i_.Z(j', j' + $1 -]- _2 -- -- -- (5)

An important implication of the inductive hypothesis is that when j' + i_ + i_ _< l and l = 3b

or 2.3 b for some b, if we replace all parameters of Z in (5) by their (l - 1)-complements, we
have

Z(l " _ j' 1) " "-- _1, l -- 1) + Z(l - i_,l 1) > Z(l -j'- " " --- $1 -- _2, l -- -_- _1 "_ 2Z2" (6)

Now consider i_ + i_.

Case 1. There exists 2- 3b in (j,j + i_ + i_ - 1] for some b, and j + i_ + i2 - 1 also has

b + 1 bits and starts with 2 in its base-3 representation.

Subcase 1.1. There is 3 b in (j, 2.3b). Removing the highest bit 1 from 3b,..., 3 b + il -- 1,

Z(3 b, 3 b -k il - 1) : Z(O, {1 - 1) + il. (7)

Removing the highest bit 2 from 2.3b,... ,j + il + i2- 1,

Z(2.3b,j + i_ + ie -- 1) = Z(O,j + i_ + i_ - 2.3 b - 1) + 2(j + il + i_ - 2- 3b).

Removing the highest bit 1 from 3 b q- i1,..., 2 • 3 b -- 1,

Z(3 b + il,2.3 b - 1) = Z(i_,3 b - 1) + (3 b - il).

Next,

>

Z(j, 3b- 1)-+Z(3 b+il,2.3 b-l)

Z(j, 3b-1)+ Z(i_,3 b-1)+(3 b-il) (By (9))

Z(j + il -t-i2 - 2.3 b,i2- 1) + (3b-- il) + 2(3b-- j) + (3b-- il)

Adding (7), (8) and (10),

(8)

Z(j,j + il + i2 - 1) _> Z(0, i 1 - 1) + Z(O, i2 - 1) + il + 2i2.

(9)

(By (5)(6)). (10)

22

i/i <_ ,ii:!i!

(i; i:il}i

iii/i!i

__:_i<)i _<ii/?_I

!:! i! ¸ :!>
i< !15_?_
_:; 51/ ;!
<- i : :

::!i < :%: ,

ili_il;ii!d!i_<

i_ :!: i!• _

j :C

H :

iil;<

Subcase 1.2. There is no number equal to 35 in (j, 2.35). We then know that j must have
b + 1 bits and be at least 3 5.

Subsubcase 1.2.1. Assume that j + il + i2 - 2.35 _> i2. Removing the highest bit 2 from
2.35,...,2.35+i2-1,

Z(2.3 e,2-3 _+iz-1) = Z(0, i_-1)+2@

Removing the highest bit 2 from 2 • 3 5 + i2,... ,j + il + i2 -- 1,

Z(2-3 5+i2,j+ix+i2- 1)

Therefore,

(11)

= Z(i2,j+i1+i2-2.35-1)+2(j+il-2.3 b)

> Z(O,j+il-2.35-1)+2(j+il-2.35) (Claim 1)

= Z(2.35,j + 171 -- 1). (12)

Z(j,j + i I -[- i2 -- 1)

= Z(j, 2.35-1)+Z(2.35,2 • 35+i2-1)+Z(2.35+i2,j+il+i_-l)

_> Z(/,2.3 b-1)+Z(0,i2-1)+Z(2.35,/+i1_l)+2i2 (By (11) (12))

= Z(j,j + il - 1) + Z(0, i2- 1) + 2i2

__ Z(0, il - 1) + Z(0, i2 - 1) + il + 2i2 (Lemma 3.4)

Subsubease 1.2.2. Assume that j + il + i_ - 2- 3 b < i2. Removing the highest bit 2 from
2 • 35,...,j + il + i2 -- 1,

Z(2.35,j + il + i_ - 1) = Z(O,j + il + i2 - 2.35 - 1) + 2(2 + il + i2 - 2.35). (13)

By Lemma 3.4,

Z(j,j + il - 1) 2 Z(0, il - 1) + i 1.

Removing the highest bit 1 from j + il,... , 2.3 b -- 1,

Z(j + il,2" 35 - 1) =

>

Adding (13), (14) and (15),

Z(j + il - 35, 35 - 1) + (2-35 - j - il)

Z(j + il + i2 - 2.3 b, i_ - 1) + 2(2.3 b - j - i_)

(14)

(Claim 2).(15)

Z(j,j + il + i2 - 1) _> Z(0, il - 1) + Z(0, i2 - 1) + il + 2i2.

Case 2. There exists 35 in (j, j + il + i2 - 1] for some b, and j + il + i_ - 1 also has b + 1

bits and starts with 1 in its base-3 representation.

Subease 2.1. There is 2- 35-1 in (j, 35).

Subsubcase 2.1.1. Assume that i_ _< 3 b-1. Removing the highest bit 2 from 2.35-1,..., 2-

35-1 -b i2 -- 1,

Z(2.35-1 , 2-35-1 + i_ - 1) = Z(0, i2- 1) + 2i2. (16)

23

i_i:ii!iii:!,:__!
i_:!!:_!_ i_

i) iiiili!_!_•:
!:_ _ii_',iiiiT:,

i il ¸

i ,'- _i__ i

?!,ii _ :

i! _<: •

:; 5_i

:_ii!!iil_i

Removing the highest bit 1 from 35,... ,j + il + i2 - 1,

Z(3b,j + il + i2 -- 1) = Z(O,j + il + i2 - 35 - 1) + (j + il + i2 - 35).

By Claim 2,

and

Z(j, 2.35-1-1) _> Z(j+ ia-2.35-1 ,i1-1)+(2.35-1-j)

(17)

(18)

Z(2"35-1+i2,1-1) >- Z(j+i1+i2-35,j+i1-2"35-1-1)+(35-1--i2). (19)

Adding (16), (17), (18) and (19),

Z(j,j+ il + i2 -- 1) > Z(0, il - 1)+ Z(O, i2 - 1) + il +2@

Subsubcase 2.1.2. Assume that i2 > 35-1. Then j > il _> i2 > 3 b-1.

Z(j - 35-1,j + il + i2 - 35 - 1))

> Z(0, il - 35-1 - 1) + Z(0, i2 - 35-1 - 1) + (il - 35-1) + 2(i2 - 3b-1).(By (5)) (20)

Let h = man{3 b + 2.35-1,j + il + i2}.

Z(h - 2.35-1, h - 1)

Z(0, 3 b-1 - 1) -[- Z(0, 35-1 - 1) -[- 3 b-1 -[- 2(3b-1). (By (5)) (21)

Subtracting 35-1 from j,..., h - 2 • 3 b-1 - 1,

Z(J ,h-2"35-1-1) = Z(j-35-1,h-35-1)+(h-j-2.35-a). (22)

In the case of h = 3 b + 2- 35-1, removing the highest bit 1 from 3 b q- 2.35-1,..., j + il + i2 - 1,

Z(h,j + il + i2 - 1)

= Z(2.35-1,2 + il + ie - 3 b - 1) + (j + ia + i2 - 35 - 2-35-1). (23)

Adding (22) and (23),

Z(j,h- 2" 3b-1 - 1) + Z(h,j + il +i2 - 1)

= Z(j - 3b-l,j + il + i2 -- 35 -- 1) q- (il + i2 -- 2.35-1)

> Z(O, il - 35-1 - 1) + Z(0, i2- 35-1 - 1) + (i1 - 35-1) + 2(i_ - 3 b-1)

+(i1+i2-2.35-1) (By (20))

= Z(3 b-l,il - 1) + Z(3 b-l,i2 - 1) + (i1 - 3 b-1) + 2(i2 - 3b-1). (24)

Adding (21) and (24),

Z(j,j + il + i2 - 1) _> Z(0, il - 1) + Z(O, i2 - 1) + il + 2i2.

24

!iiiiiiliili;ii:i!i!::i...•.._::_:__:_:::•_:::_:__:_::_:::_:_::::.......__:::::_:__:_:_:_:__: __:___:_:__i_i_:__i:i:_!_ii_!:_i:__ii:i;!:_:_i__!!_:_:__i,_i_:__!!_;ii__:_i.iii::_iiiii_iii!iiiiii_iiii_iiii!iiiii_iiiiiiililil;iilililiiililiiiiiiiiiiiiiiiliiiiiiiiiiiiiiiiiiiiiiiii;iiiiiiiii;!iiiiii;iiiiiiliiiiiiiiiiiiii;iilliiiiiii

ii II

 iiii!i iiil,ii?

i• ii!i_; _r

i_":' iii: _i_:

iii:i:ff ¸ <:_:

i!_;il:_:ili!i<i'
i;ii)i _ i_ :_ '

!ii i¸•

_<iiiiii:
_i! _!:i_: •

+ i_ii: _

Subcase 2.2. There is no number equal to 2.3 b-1 in (j, 35). We then know that j must
be at least 2.35-1 .

Subsubcase 2.2.1. Assume that j + il + i2 - 35 > il- Removing the highest bit 1 from
3b,...,3 b + il - 1,

Z(3 b,3 b-t-il- 1) = Z(0, il-- 1)-l-ix. (25)

Removing the highest bit 1 from 3 5 + il,...,j + il + i2 - 1,

Z(3 5 + il,j + il + i2 -- 1) = Z(il,j + il + i2 - 35 - 1) + (j + i2 - 3 b)

> Z(O,j+ie-3 b-1)+2(j+i_-35) (Lemma 3.4). (26)

Removing the highest bit 2 from j,..., 3_ - 1,

Z(j, 35-1) = Z(j-2.3 b-1,35-1-1)+2(35-j)

>_ Z(j + i_ - 35, i: - 1) + 2(3 b - j) (Claim 3). (27)

Adding (25), (26) and (27),

Z(j,j + il + i: - 1) > Z(O, il - 1)+ Z(0, i:- 1)+il + 2i2.

Subsubcase 2.2.2. Assume that j + il + ie - 3 b < il. Removing the highest bit 1 from
3b, -. .,j+ il zc i2 -- 1,

Z(3b'j+il+i:-l) = Z(O,j + il + i2 -- 3b --1) + (j + il + i2 -- 3b). (28)

Removing the highest bit 2 from j,j + i: - 1,

Z(j, j + i: - 1)

By Claim 2,

Z(j + i_, 3 b - 1)

Adding (28), (29) and (30),

= Z(j - 2.3b-1,j + i2 -- 2.3 b-1 -- 1) + 2i2

_> Z(0, i2 - 1) + 2i2 (Claim 1). (29)

>_ Z(j + il + i2 - 3 b, il - 1) + (3 ° - j - i:). (30)

Z(j + j + i! + i2 - 1) _> Z(0, iI -- 1) -I- Z(0, i2 -- 1) + il + 2i_.

Case 3. There is no number equal to 3b or 2.3 ° in (j, j + il + i_ - 1] for any b. We then

know that j,..., j + il + i2 - 1 must all have the same number of bits, say b + 1, and the same

highest bit 1 or 2. Let Pl "" "Pt be the longest common prefix of the base-3 representations of

j,-.. ,j + il -1-i2 -- 1. Let p = Pl • 3° + "'" + Pt " 3 b-t+1. Clearly, p _<j and Pl _ 1. Removing
the highest t bits Pl "" "Pt from j,...,j -_-il + i_ - 1,

Z(j,j + il + i2 - 1) > Z(j - p,j + il + i2 - p - 1) + (il + i2).

25

:::::': ::: __::_::::::: _ ::: ::!:: ::i:_:_:_ :i̧ !_i: i:! i+?i:_i!_:_i_i_!Z7_!iii_!_i!_ii_i_!:!!i_!!_!_ii!_ii_ii_iii_iii_iii_i_ii_ii_iiii_ii_ii_iiiiiiiii_iiiiii_iiiiiii_i_iiiii

Now we wish to show that Z(j -p,j+ il + i2 -p- 1) _> Z(O, il - 1) + Z(0, i2 - 1) + i2, or

equivalently, Z(j - p,j + il + i2 - p - 1) - Z(0, il - 1) - Z(0, i2 - 1) _> i2. If j - p < il,

Z(j-p,j+il +i2-p-1)_ Z(O, ix_ l)_ Z(O, i2_ l)

:- Z(il,j + il 37 i2 - p - 1) - Z(O,j - p - 1) - Z(0, i2 - 1)

> max{j - p, i2} 372 min{j - p, i} (By (5)).

Z i2.

If j - p _> il, there must exist 3b' or 2.3 b' in (j - p, j + il + i2 - p - 1] for some bt < b since

the highest bit in j - p is not the same as the highest bit in j + il 37 i2 - p - 1. By Cases 1
and 2.

Z(j -p, j37 ia 37 i2 -p- 1) - Z(0, il - 1) - Z(0, i2- 1) _> il 37 2i2 > i2. []

LEMMA 4.1 W(0, 4i - 1) = 4W(0, i - 1) + 4i for i >_ 1.

Proof We induct on i. When i = 1, W(0, 3) = 4W(0, 0) + 4 = 4. Assume that the equation
holds for _< i - 1. Now consider i.

W(0, 4i - 1) = W(0,4i- 5)37 w(4i- 4) 37 w(4i- 3)+ w(4i- 2)37 w(4i- 1)

= 4W(0, i- 2) 37(4i- 4) 37 w(4i- 4) 37 w(4i- 3)37 w(4i- 2) 37 w(4i- 1)

(Inductive hypothesis)

= 4W(0, i- 2) + (4i- 4) + w(i- 1)+ w(4i- 3)+ w(4i- 2)+ w(4i- 1)

(Since w(4i - 4) = w(i - 1))

4W(0, i- 2)+ (4i-4) + w(i-

37w(4i- 1) (Since w(4i- 3)=

= 4W(O,i-2) 37(4i-4)+w(i-

37w(4i- 1) (Since w(4i- 2)=

= 4W(0, i-2)+(4i-4)37w(i-

+w(i - 1) + 2 (Since w(4i - 1)

= 4W(0, i-1)+4i.[]

1)+ w(i- 1)+ 1+ w(4i- 2)

_(i- 1)+ 1)

1)37w(i- 1)371 37w(i- 1)371

_(i- 1)+ 1)

1)+ w(i- 1) + 1+ w(i- 1) + 1

= w(i - 1) + 2)

LEMMA 4.2 W(0, 4i) = W(0, i) + 3W(0, i - 1) + 4i for i >_ 1.

Proof Straightforward by using Lemma 4.1. |

LEMMA 4.3 W(0, 4i 37 1) = 2W(0, i) + 2W(0, i - 1) 37 4i 37 1 for i _> 1.

Proof Straightforward by using Lemma 4.2. |

LEMMA 4.4 W(0, 4i + 2) = 3W(0, i) + W(0, i - 1) + 4i + 2 for i > 1.

Proof Straightforward by using Lemma 4.3. []

26

!i:iiiii!i:!i:!i:i::..::_::::_::::_:::_:_::::>::::_:_::::<<::_:_:_:_:::_:__:i:::_:<<_:::_:__:__:_!<_:_:<<_:.:_i:::__z/:<<!i:i<:_<_:_<_:ii_:iif:;<!_!:_:?:iii_<<ii_i:ii_i<_:£_ii:_<!i,:iii_i!:i:_iii_iiiili!ii:_ii:i_!:i_iiii!_ii_iilli_i_i_iii_ii_i_ii_iiii_iii_i_iii_iii_i_iiiiiii_i_i_i_i_iiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiii_iiiiiiiiiiiii_iiiii_iiiiiiiiiii
ii_• ?!,' _i<:i_i::_j:

i_i:_ _ i

il_: i
• _7 i<

i) _:< •

fillI <iiii

<! _i!_::_

<

: ii _

• <i

if!i!<

</i _ <_ •

i!! _

:il i

,ii

/

. i

References

[1] D. Agrawal, M. Choy, H. V. Leong, and A. Singh, Maya: A simulation platform for

distributed shared memories, Proc. 8 th Workshop on Parallel and Distributed Simulation,
1994, pp. 151-155.

[2] S. H. Bokhari, Partitioning problems in parallel, pipelined, and distributed computing,

IEEE Trans. on Comput., 37 (1988), pp. 48-57.

[3] G. Brassard and P. Bratley, Algorithms: Theory and Practice, Prentice-Hall, Englewood

Cliffs, NJ, 1988.

[4] W. J. Dally, Performance analysis of k-ary n-cube interconnection networks, IEEE

Trans. on Comput., 39 (1990), pp. 775-785.

[5] P. Dickens, P. Heidelberger, and D. M. Nicol, A distributed memory LAPSE: Parallel

simulation of message-passing programs, Proc. 8th Workshop on Parallel and Distributed

Simulation, 1994, pp. 32-38.

[6] A. Marshal and I. Olkin, Inequalities : Theory of Majorization and Its Application,

Academic Press, New York, 1979.

[7] C. McCann and J. Zahorjan, Processor allocation policies for message-passing parallel

computers, Proc. the 1994 SIGMETRICS Conference, 1994, pp. 19-32.

[8] G. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis, Automatic mesh partitioning, in

Graph Theory and Sparse Matrix Computation, Springer-Verlag, 1993.

[9] D. M. Nicol, Rectilinear partitioning of irregular data parallel computations, J. of Parallel

and Distributed Computing, to appear.

[10] D. M. Nicol and W. Mao, On bottleneck partitioning of k-ary n-cubes, ICASE Technical

Report 94-72, NASA CR-194966, 1994.

[11] A. Pothen, H. D. Simon, and K. P. Lion, Partitioning sparse matrices with eigenvectors

of graphs, SIAM J. on Matrix Analysis and Applications, 11 (1990), pp. 430-452.

[12] D. A. Reed, L. M. Adams, and M. L. Patrick, Stencils and problem partitionings: Their

influence on the performance of multiple processor systems, IEEE Trans. on Comput.,

36 (1987), pp. 845-858.

27

• . I L _ i ¸¸

_ _ _i _i_ i_iii _i__ _i_i,

•_!_i:: if: _

il • L

N I

i_ 11

iii ,,,

_GIN_L PAGE

or Po< LLAC Y

REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response including the time for reviewing instructions searchin existin data
gat,her!ng and mamtamm_'the data needed and completingand rev ewingthe Collect on of nformation Send comments recardin_ this bur _ _- g sources,
COlleCllon O1 ntormation incJudin su " • . , - . 6 _ . u_l, _aulll=t¢ u/¢lly uuler aspect o, in s

I , g ggestlons for reduclngthls burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway. Suite 1204 Arlington VA 22202-4302 and to the Office of Management and Budget, Paperwork Reductiol Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) _ 2. REPORT DATE

i October 1994

4. TITLE AND SUBTITLE

ON kARY n-CUBES: THEORY AND APPLICATIONS

6. AUTHOR(S)
Weizhen Mao

David M. Nicol

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card

Final Report

Submitted to SIAM Journal of Computing

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 60, 61

3. REPORT TYPE AND DATES COVERED

Contractor Report

5. FUNDING NUMBERS

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 94-88

10. SPONSORING�MONITORING

AGENCY REPORT NUMBER

NASA CR-194996

ICASE Report No. 94-88

]2b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Many parallel processing networks can be viewed as graphs called k-ary n-cubes, whose special cases include rings,

hypercubes and toruses. In this paper, combinatorial properties of k-ary n-cubes are explored. In particular, the
problem of characterizing the subgraph of a given number of nodes with the maximum edge count is studied. These

theoretical results are then used to compute a lower bounding function in branch-and-bound partitioning _lgorithms
and to establish the optimality of some irregular partitions.

14. SUBJECT TERMS

k-ary n-cube, combinatorics, partitioning, load balance

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATIOP

OF ABSTRACT

15. NUMBER OF PAGES

29

]6. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

Standard Form 2981

Prescribed by ANSI
298-102

